eBongBD.com

"All about things for easy life"
This is a website about solution of our daily problems. You can get here all Problem's solution.

Breaking

পড়ার টেবিলে বসার পূর্বে ১০ মিনিট হাঁটলে বা হালকা ব্যায়াম করলে মস্তিষ্কের ধারণ ক্ষমতা বৃদ্ধি পায়। এতে পড়া মনে রাখতে বেশ সুবিধা হয়।

Sunday, September 11, 2016

সমান্তর ধারা ও গুণোত্তর অনুক্রম এবং ধারা



অনুক্রম: কতকগু‌লো সংখ্যা বা রা‌শিকে একটি নি‌র্দিষ্ট নিয়মানুসা‌রে ধারাবাহ‌তক সাজা‌নো‌কে অনুক্রম বলে।
পদ: অনুক্রমের প্রতিটি সংখ্যা বা রাশিকে পদ ব‌লে।
ধারা: অনুক্রমের পদ বা সংখ্যাগুলোর সমষ্টিকে ধারা বলে।
সসীম বা শান্ত ধারা : কোন ধারার পদ সংখ্যা সসীম হলে তাকে সসীম বা সান্ত ধারা বলে।
অসীম ধারা : কোন ধারার পদ সংখ্যা অসীম হলে তাকে অসীম ধারা বলে।
সমান্তর ধারা : যে ধারায় কোন পদক্তোর পরবর্তী পদ থে‌কে বি‌য়োগ করলে একই সংখ্যা বা রাশি পাওয়া যায় তাকে সমান্তর ধারা বলে।
গু‌ণোত্তর ধারা : যে ধারার কোন প‌দের সা‌থে তার পরবর্তী প‌দের অনুপাত সর্বদাই সমান হয় তাকে গুণোত্তর ধারা বলে।

প্র‌য়োজনীয় সূত্রাবলি :

সমান্তর ধারার সাধারণ পদ বা r তম পদ : প্রথম পদ a, সাধারণ অন্তর d হ‌লে, r তম পদ = a+(r-1)d
সমান্তর ধারার n সংখ্যক পদের সমষ্টি : একটি সমান্তর ধারার প্রথম পদ a, সাধারণ অন্তর d হ‌লে, তার n সংখ্যক পদের সমষ্টি, S = n{2a+(n-1)d}/2
n সংখ্যক স্বাভাবিক সংখ্যার সমষ্টি, S = n(n+1)/2
n সংখ্যক স্বাভাবিক সংখ্যার ব‌র্গের সমষ্টি, S = n(n+1)(2n+1)/6
n সংখ্যক স্বাভাবিক সংখ্যার ঘনের সমষ্টি, S = {n(n+1)/2}^2
গুণোত্তর ধারার সাধারণ পদ বা r তম পদ : কোন ধারার প্রথম পদ a, সাধারণ অনুপাত q হলে, r তম পদ = aq^(r-1)
গুণোত্তর ধারার n সখ্যক পদের সমষ্টি, S = a(1-q^n)/(1-q); যেখা‌নে q1

বিসিএস পরীক্ষায় অাসা প্র‌শ্নগুলোর সমাধান :

১। একটি গু‌ণোত্তর অনুক্র‌মের দ্বিতীয় পদটি -48 এবং পঞ্চম পদটি 3/4 হ‌লে, সাধারণ অনুপাত কত?
ক। 1/2
খ। – 1/2
গ। 1/4
ঘ। – 1/4 (Ans)
সমাধান : n তম পদ = aq^(n-1)
দ্বিতীয় পদ = aq^(2-1) = aq = -48
a = -48/q ~~~~~ (i)
অাবার, পঞ্চম পদ = aq^(5-1) = 3/4
বা, aq^4 = 3/4
বা, (-48/q)q^4=3/4
বা, -48 q^3 = 3/4
বা, q^3 = – 3/192
বা, q^3 = (-1/4)^3
বা, q = -1/4
অর্থাৎ সাধারণ অনুপাত – 1/4
২। 1^2+2^2+3^2+…..+x^2 এর মান কত?
ক। {x(x+1)(2x+1)}/6 (Ans)
খ। x(x+1)/2
গ। x
ঘ। {x(x+1)/2}^2
৩। 1^2+2^2+3^2+…..+50^2 = কত?
ক। 35725
খ। 42925 (Ans)
গ। 45500
ঘ। 47225
সমাধান: S = {n(n+1)(2n+1)}/6
= {50(50+1)(2×50+1)}/6
= 50x51x101/6
= 42925
৪। log2+log4+log8+ ….. ধারাটির প্রথম দশটি পদের সম‌ষ্টি কত?
ক। 45log2
খ। 55log2 (Ans)
গ। 65log2
ঘ। 75log2
সমাধান: log2+log4+log8+ …..
= log2+log2^2+log2^3+ ….+log2^10
= 1log2+2log2+3log2+ …..+10log2
= (1+2+3+…….+10)log2
= {10(10+1)/2}log2
= 55log2
৫। 1+2+3+…..+99 =কত?
ক। 4650
খ। 4750
গ। 4850
ঘ। 4950 (Ans)
সমাধান : S = {n(n+1)/2}
= 99(99+1)/2
= 99×50
= 4959

No comments:

Post a Comment